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Abstract. We studied, theoretically, the two-electron energy levels for double quantum dots, both
symmetric and asymmetric, in the presence of a homogeneous magnetic field. Within the effective-
mass approach, we expanded the two-electron wave function, in an orthogonal basis formed by
the products of each electron wave function in growth directionz, and one-particle solutions of
the magnetic Hamiltonian in thex–y plane. We applied our method to the case of AlxGa1−xAs,
for which we showed how the wave functions vary, and how the basis functions are mixed in a
nontrivial way by the effect of the Coulomb potential.

1. Introduction

In double quantum dots [1] each electron wave function can be localized either in the same
dot, or in different dots, or in both. In the presence of the Coulomb interaction each electron
repels each other, minimizing the total energy of the system. Coupled quantum dots with a
small number of electrons [2, 3] are excellent candidate subjects for studying the Coulomb
blockade effect [4–8] and tunnelling between quantum dots.

In 1993 Bryant [9] studied the energy spectra, charge densities, and correlation functions
for interacting two-electron systems in coupled dots as functions of the applied bias. Bryant
was interested in charging energies and Coulomb blockade effects in systems with a small
number of electrons, and considered the external barriers to be infinite, and no magnetic field.
Bryant reduced the six-dimensional Coulomb integral to a three-dimensional integral that was
solved numerically. The Coulomb matrix elements were only calculated at zero applied bias
to reduce the computer time required for these calculations by several orders of magnitude.

In 1996 Ohet al [10] studied the electronic structure in coupled quantum dots with one
or two electrons in magnetic fields. They were interested in the spin transitions of the ground
state and the optical transitions between the energy levels. They studied a symmetric system
of two coupled quantum dots as a function of the magnetic field with no external electric field.

Recently, Kaputkina and Lozovik [11] studied the energy spectra for interacting two-
electron systems in horizontal and vertical coupled quantum dots as functions of quantum dot
separation, lateral confinement, and magnetic field. They considered each dot as a strictly
two-dimensional system.

In this work, we studied the two-electron energy levels in symmetric and asymmetric
vertical double quantum dots in the presence of a magnetic field, as a function of the
inter-dot barrier and vertical dot widths, the magnetic field strength, and the lateral dot
confinement. Within the effective-mass approach we expanded the two-electron wave function
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in an orthogonal basis formed by products of the individual electron wave functions in the
growth directionz, and one-particle solutions of the magnetic Hamiltonian in thex–y plane.
The Coulomb potential between electrons produces off-diagonal terms by mixing our basis
states. The resulting six-dimensional Coulomb integral was reduced analytically to a one-
dimensional integral; this was done numerically. We obtained the energies and wave functions
by diagonalizing the two-electron Hamiltonian in a truncated basis. Our basis set is orthogonal,
and we do not use a variational method. We applied our method to study the first eight
two-electron states in GaAs–AlxGa1−xAs heterostructures, using barrier heights given by the
band-gap discontinuity.

A recent discussion of the most commonly used methods of calculation for the electronic
states in quantum dots can be found in reference [12].

2. Formalism

The effective-mass Hamiltonian for two electrons in a double quantum dot, in the presence of
a magnetic fieldB pointing alongz, can be written as

H = Hxy

1 +Hxy

2 +Hz
1(z1) +Hz

2(z2) + Vcoul(r, |z1− z2|). (1)

H
xy

1 andHxy

2 are thex–y Hamiltonians for electrons 1 and 2 in a parabolic potential,

H
xy

i =
(pi − qAi )

2

2m
+

1

2
mω2

0r
2
i . (2)

Hz
1(z1) andHz

2(z2) are the one-dimensional Hamiltonians for electrons,

Hz
i (zi) = p2

z,i/2m + Ve(zi). (3)

Ve(z1) andVe(z2) are the potentials that define the confinement for electrons in the five regions
of z, shown in figure 1.Vcoul(r, |z1−z2|) is the Coulomb potential between electrons, including
an effective dielectric constant for the system.
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Figure 1. The potential profile in thez-direction for electrons.
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Transforming the in-plane coordinatesr1 and r2 for each electron towards relative
coordinatesr and centre-of-mass coordinatesR, the Hamiltonian (1) transforms to

H = P 2

2M
+
e2B2

2M
R2 +

Mω2
0

2
R2 +

eB

M
Lz

+
p2

2µ
+
µ

8
(ω2

c + 4ω2
0)r

2 +
ωc

2
lz

+H1(z1) +H2(z2) + Vcoul(r, |z1− z2|) (4)

wherep andP are the momentum operators for the coordinatesr andR respectively,µ is the
reduced mass (m/2),M is the total mass (2m), ωc is the cyclotronic frequency (eB/m), ω0

is a frequency characterizing the quantum dot confinement in the planex–y, lz is the angular
momentum operator in relative coordinates, andLz is the angular momentum operator in
centre-of-mass coordinates.

The first line of (4) represents a two-dimensional harmonic oscillator, and involves only
centre-of-mass coordinates which are not coupled to the others terms, and so can be solved
separately. We expanded the solution of the other terms in the Hamiltonian (4), as a linear
combination of products of eigenfunctions of the magnetic Hamiltonian in thex–y plane (the
second line of (4)), and eigenfunctions of the electron Hamiltonians in thez-direction (H1(z1)

andH2(z2)):

9exc
n =

∑
νr ,νe1,νe2

Cnνr ,νe1,νe2ψνr (r, φ)ψνe1(z1)ψνe2(z2) (5)

in which, in the symmetric gauge,

ψνr ,l =
1

2π

(
2(n− l/2− |l|/2)g|l|+1

B

(|l|/2 +n− l/2)!
)1/2

eilφ

(
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i

)|l|
e−gBr

2/2L
|l|
n−l/2−|l|/2(gBr

2) (6)

where

gB = mω/2h̄ ω =
√
ω2
c + 4ω2

0.

The electron wave functions defined in the five regions ofz, shown in figure 1, are given by

ψνe(ze) =



a1ek1(ze−z1)

a2 cos(k2(ze − z1)) + a3 sin(k2(ze − z1))

a4ek3(ze−z2) + a5e−k3(ze−z2)

a6 cos(k4(ze − z3)) + a7 sin(k4(ze − z3))

a8e−k5(ze−z4).

(7)

The Coulomb interaction produces off-diagonal terms by mixing our basis states. In order
to obtain the system of equations for the coefficients in expansion (5), we need to evaluate the
Coulomb integral∫

dφ dr dz1 dz2 ψ
∗
ν ′r
ψν ′e1ψν

′
e2
Vcoul(r, |ze1− ze2|)ψνrψνe1ψνe2. (8)

Theφ-integral is trivial, because oflz-conservation. Using the explicit expansion for the
Laguerre polynomials (Ln) in ψν ′r andψνr (equation (6)), the remaining of integral (8) can be
written as a sum of terms of the form∫

dz1 dz2 ψν ′e1ψν
′
e2
ψνe1ψνe2

∫ ∞
0
r dr

r2we−gBr
2√

r2 + (z1− z2)2
(9)
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wherew is an integer. On using

1√
r2 + (z1− z2)2

=
∫ ∞

0
J0(rα)e

−|z1−z2|α dα (10)

and after solving ther-integral, this yields∫ ∞
0

dα

(
α2

4gB

)m
exp

(−α2

4gB

)∫
dz1 dz2 ψν ′e1ψν

′
e2

e−|z1−z2|αψνe1ψνe2. (11)

The z1- andz2-integrals can be solved analytically. The evaluation of these integrals is
cumbersome due to the large number of terms resulting from the five different regions of the
potential. Thez1- and z2-integrals contain both decoupled terms in which thez1- and z2-
integrals are independent of each other and coupled terms where the integration limits of the
z2-integral containz1. The remainingα-integral must be calculated numerically.

Diagonalizing the system of equations resulting for the coefficients in expansion (5), in a
truncated basis, we obtained the energies and wave functions for the two-electron states.

3. Results

We calculated the two-electron energy levels for symmetric and asymmetric GaAs double
quantum dots, coupled by AlxGa1−xAs barriers (x = 0.3). The band gap used in our
calculations is given byEg(x) = 1.52 + 1.36x + 0.22x2. The band-gap offset considered
was 60% for the conduction band and 40% for the valence band. We used the same electronic
mass for all five regions in the double quantum dot. We used an electron massm = 0.067me,
and a dielectric constantε = 12.5ε0. In our calculations we used a truncated basis set composed
of twelve Landau-like wave functions, and four wave functions for each electron.

3.1. Energies as a function of well and barrier widths

In this section we present our results for the two-electron energy levels in double quantum dots
as a function of well and barrier widths, ranging from zero to large values, in a 10 T magnetic
field, and for lateral confinement ¯hω0 = 4 meV.

Figure 2 shows the first eight energy levels for a symmetrically coupled double quantum
dot, where both dots have widths of 100 Å in thez-direction, and the middle barrier ranges
from 0 to 50 Å. For zero barrier width, our basis statesψν(z) given by equation (7) correspond
to the states for a single 200 Å quantum well. For nonzero barrier, the energies for the first
two basis states approach each other. For wide barriers these states approach a single energy
value that corresponds to the first level for each independent 100 Å well. This behaviour for
the first two basis states (7) for each electron explains the general behaviour for the first set
of states in this figure as follows: the first basis state for each electron combines forming the
ground two-electron state11; the first basis state for one electron combines with the second
basis state for the second electron forming the states12− 21and12 + 21, which in the absence
of Coulomb interaction have the same energy as seen in figure 2 (left); finally the second basis
states for each electron combine forming the state22. The second more energetic set of states,
which can clearly be distinguished from the first set of states for barriers greater than 15 Å,
corresponds to Landau-like states for the states in the first set, and originates from the lateral
dot confinement and magnetic confinement. For 10 Å barriers the energy for the22 state
approaches the energy for the first Landau-like state11, causing an interaction between these
states as clearly seen in figure 2 (right). The big Coulomb interaction between these two levels
is caused by the strong overlap for the two-electron wave functions for these states. For wide
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Figure 2. Two-electron (l = 0) energy levels for a symmetric double quantum dot as a function
of the barrier width, for dots of 100 Å, withB = 10 T, andh̄ω0 = 4 meV. Numbers close to some
curves show the main composition for the two-electron wave function, in terms of DQW basis
states. Numbers enclosed in parentheses indicate a small contribution from these states to the total
wave function.

barriers the basis states are better approximated as basis states for the left well (L ) and for the
right well (R). For wide barriers our state11approach the state11− 22 (which in terms ofL
andR states can be expressed asLR + RL ), our state12− 21 (or LR − RL ) gets close to the
11− 22 state, and the state12 + 21(or LL − RR) approaches the same energy as the state
22 + 11(or LL + RR ).

Figure 3 shows the first eight energy levels for an asymmetrically coupled double quantum
dot, where the inter-dot barrier has a width of 25 Å, the right dot has a width of 100 Å, and
the left dot width ranges from 0 to 100 Å. The figure on the left shows the two-electron
energies obtained without considering the Coulomb interaction between electrons. The figure
on the right takes into account the Coulomb interaction, which has the effect of shifting the
energies towards higher values and removing some degeneracy. The11 state corresponds to
both electrons being localized in the right (wider) dot, and it is almost uninfluenced by the
changes in the left dot size. This state lowers its energy when the size of the left dot approaches
that of the right dot, because in this symmetric situation each electron wave function in our
basis is spread over both two dots. The12− 21 and12 + 21states (which have the same
energy in the absence of the Coulomb interaction) are strongly influenced by changing the
width of the left dot. This behaviour originates from the energy dependency of the second
basis state2 (which is localized in the left dot) on the dot width. The22 state corresponds to
both electrons being localized in the left (varying) dot; the energy of this state is much more
influenced by varying the left dot width, because both of the constituent basis states are mainly
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Figure 3. Two-electron (l = 0) energy levels for an asymmetric double quantum dot as a function
of the left dot width, for a barrier of 25 Å, a right dot width of 100 Å,B = 10 T, andh̄ω0 = 4 meV.

localized in this dot. In this figure there are several regions where the energy of a Landau-like
state gets close to those of other states, causing an interaction between these states. The small
Coulomb interaction between these levels is caused by the small overlap for the two-electron
wave functions for these states.

Figure 4 shows the first eight energy levels for a symmetrically coupled double quantum
dot, where the inter-dot barrier has a width of 25 Å and the left and right dot widths are
varied simultaneously from 0 to 100 Å. The figure on the left shows the two-electron energies
obtained without considering the Coulomb interaction between electrons. Because the energies
depend so strongly on dot widths, we subtracted the energy from the first state obtained without
Coulomb interaction shown in the inset of the figure on the left. The figure on the right takes
into account the Coulomb interaction. The composition of the states in terms of the constituent
basis states is similar to those in previous cases. The maxima present for some states, for dot
widths near 15 Å, can be explained by noting that when the second basis-state energy is close
to the higher permissible energy in the finite double quantum well (caused by the confinement
in thez-direction), this state does not change its energy at the same rate as the first state does
when the dot width decreases.

Figure 5 shows the first eight energy levels for a symmetrically coupled double quantum
dot, where the inter-dot barrier has a width of 25 Å, and the left and right dot widths are varied
simultaneously from 0 to 100 Å. This figure shows the energy levels for two-electron states
with angular momentuml = 1. In this figure we subtracted the energy from the first state
obtained without considering Coulomb interaction shown in the inset of the figure on the left.
The behaviour of the energy levels is similar to that in the previous case forl = 0, but here the
energies are higher as can be seen clearly in the inset.
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Figure 4. Two-electron (l = 0) energy levels for a symmetric double quantum dot as a function of
dot width, for a barrier of 25 Å,B = 10 T, andh̄ω0 = 4 meV. We subtracted the energy from the
first state obtained without considering Coulomb interaction shown in the inset of the figure on the
left.
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Figure 5. Two-electron energy levels, with angular momentuml = 1, for a symmetric double
quantum dot as a function of dot width, for a barrier of 25 Å,B = 10 T, andh̄ω0 = 4 meV. We
subtracted the energy from the first state obtained without considering Coulomb interaction shown
in the inset of the figure on the left.
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3.2. Energies as a function of magnetic field and dot confinement

Increasing the magnetic field in a symmetric or asymmetric double quantum dot produces a
shift in the two-electron energy levels towards higher energies and an increase in the interaction
energy. The increase in the energy of interaction between electrons is a consequence of two
effects. First, the wave-function confinement in thex–y plane produces a stronger interaction
in thez-axis, as the electron wave functions penetrate into the barrier. Second, the repulsion
between electrons in the plane increases, because their wave functions are confined to a smaller
region.

The large interaction between electrons obtained when increasing the applied magnetic
field is similar to the effect of a change in the barrier and dot widths. This can be used to study
these systems in regions of interest, without the need for the growth of many different samples.

Figure 6 shows the magnetic field effects on the two-electron energy levels for an
asymmetric double quantum dot, where the inter-dot barrier has a width of 25 Å, the right
dot has a width of 100 Å, the left dot has a width of 80 Å, and the lateral confinement
corresponds to ¯hω0 = 4 meV. The figure on the left shows the two-electron energies obtained
without considering the Coulomb interaction between electrons. The figure on the right takes
into account the Coulomb interaction. The first set of two-electron states corresponds to states
defined by the confinement in thez-direction. The second more energetic set of states, which
can be clearly distinguished from the first set of states for magnetic fields greater than 12 T,
corresponds to Landau-like states for the states in the first set. The bigger slope for the11
and22 state when the Coulomb interaction is included is caused by the stronger interaction
between electrons localized in the same dot when the in-plane localization increases. The
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Figure 6. Two-electron (l = 0) energy levels for an asymmetric double quantum dot as a function
of the external magnetic field, for a left dot width of 80 Å, a right dot width of 100 Å, a barrier of
25 Å, andh̄ω0 = 4 meV.
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slope for the12− 21 and12 + 21states is a consequence of the different dot localization for
the electrons involved in these states.

Figure 7 shows the lateral dot confinement effects on the two-electron energy levels for
a symmetric double quantum dot in a 10 T magnetic field, where the inter-dot barrier has
a width of 25 Å, and the right and left dot each have a width of 100 Å. The figure on the
left shows the two-electron energies obtained without considering the Coulomb interaction
between electrons. The figure on the right takes into account the Coulomb interaction, which
has the effect of shifting the energies towards higher values and removing the degeneracy in the
12− 21and12 + 21states. It is clear from this figure that for a lateral dot confinement (¯hω0)
below 4 meV the effective confinement is dominated by the magnetic confinement, and that
for confinement over 4 meV it is dominated by the lateral geometrical confinement. The first
set of two-electron states corresponds to states defined by the confinement in thez-direction.
The second more energetic set of states, corresponds to Landau-like states for the states in the
first set.
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Figure 7. Two-electron (l = 0) energy levels for a symmetric double quantum dot as a function of
the lateral confinement (¯hω0), for dots of width 100 Å, a barrier of 25 Å, andB = 10 T.

3.3. Coulomb energies for different well widths

Using our previous results for two-electron energies in different double-quantum-dot geom-
etries, it is possible to construct for each state the difference between the energies obtained
considering and without taking into account the Coulomb interaction. Plotting this energy
difference as a function of well width shows the evolution in the Coulomb energy for each
state and the transitions between different states.

Figure 8 shows the Coulomb energy as a function of the left dot width for an asymmetric
double quantum dot, where the inter-dot barrier has a width of 25 Å, the right dot has a width
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Figure 8. Coulomb energies for the first three two-electron states withl = 0, for an asymmetric
double quantum dot as a function of the left dot width, for a right dot width of 100 Å, a barrier of
25 Å,B = 10 T, andh̄ω0 = 4 meV.

of 100 Å, in a 10 T magnetic field, and the lateral confinement corresponds to ¯hω0 = 4 meV.
In the11ground state, both constituent electrons are mainly localized in the right (wider) dot.
Because both electrons are localized in the same dot, there is a strong Coulomb interaction
almost independent of the left dot size. When the width of the left dot approaches that for the
symmetric situation where both dots have a width of 100 Å, the first basis state for each electron
spreads over the two dots. This delocalization in the basis states produces a decreasing Coulomb
interaction for the11 state when the left dot width reaches the symmetric configuration. The
second state goes towards the symmetric situation, transforming from a Landau-like state of
the11 state towards the12− 21 state. The third state goes towards the symmetric situation,
first transforming from a Landau-like state of the11state towards the12− 21state, and then
transforming towards the12 + 21state. The big differences between the Coulomb energies
for the 12 + 21 state and the12 − 21 state can be understood by writing these states in
terms of left dot states (L ) and right dot states (R). Although the barrier width it is not too
wide, the12− 21 state behaves mainly as aRL − LR state, and the12 + 21state behaves
as aLL − RR state. This makes it clear that in the12− 21 state each electron is mainly
localized in a different dot, and in the12 + 21state each electron is mainly localized in the
same dot.

Figure 9 shows the Coulomb energy as a function of dot width for a symmetric double
quantum dot, where the inter-dot barrier has a width of 25 Å, the left and right dot widths are
varied simultaneously from 0 to 100 Å, in a 10 T magnetic field, and the lateral confinement
corresponds to ¯hω0 = 4 meV. Symmetry forces all our basis states to be equally localized
in each dot. With increasing dot widths, our basis states get more delocalized over the two
dots. This delocalization in the basis states produces a decreasing Coulomb interaction for
all the two-electron states with increasing dot width, provided that these states do not change
constitution in terms of basis states. This is exactly what happens for the11ground state. The
second state goes towards the wider-dot situation, transforming from a Landau-like state of
the11 state towards the12− 21 state. The third state goes towards the wider-dot situation,
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Figure 9. Coulomb energies for the first three two-electron states withl = 0, for a symmetric
double quantum dot as a function of dot width, for a barrier of 25 Å,B = 10 T, andh̄ω0 = 4 meV.

first transforming from a Landau-like state of the11state towards the12− 21state, and then
transforming towards the12 + 21state. The big differences in the Coulomb energies for the
12 + 21state and the12− 21state can be explained again by the fact that in the12− 21state
each electron is mainly localized in a different dot, and in the12 + 21state each electron is
mainly localized in the same dot.

4. Conclusions

In this work we studied the energies and wave functions for several two-electron states in
double quantum dots, in a magnetic field pointing in the growth directionz. We calculated
the energy for symmetric and asymmetric double quantum dots as a function of barrier width,
dot (or dots) widths, magnetic field, and lateral dot confinement.

There are some regions of parameters where the mixing of lateral states and vertical states
is very strong. In these regions, the widely used approximation of decoupling the lateral and
vertical components is not valid.

In our method of calculation we used an orthogonal basis that involves functions of single-
particle solutions of the double quantum well in thez-direction, which makes our method
appropriate for small-to-medium barrier widths.

In our results we do not include the effect of considering the presence of spin. This effect
can be readily included by the addition of a term of the formg∗µB EB · ES/h̄, and taking into
account the symmetry for the two-electron wave function under interchange of particles. This
term can be responsible for transitions of states with angular momentuml = 1 towards the
ground state [13–16] (this effect appears for wider barriers than those considered in this work,
as shown in reference [10]).

All the energies presented in our results were obtained without considering the centre-of-
mass energy; if total energies are needed, the energy corresponding to first line of (4) must be
added.
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